Wireless, Battery-Free, Fully Implantable Multimodal and Multisite Pacemakers for Applications in Small Animal Models

Citation:

Gutruf P, Yin RT, Lee KB, Ausra J, Brennan JA, Qiao Y, Xie Z, Peralta R, Talarico O, Murillo A, Chen SW, Leshock JP, Haney CR, Waters EA, Zhang C, Luan H, Huang Y, Trachiotis G, Efimov IR, Rogers JA. “Wireless, Battery-Free, Fully Implantable Multimodal and Multisite Pacemakers for Applications in Small Animal Models.” Nature Communications10(1), 5742 (2017).

Bioresorbable pressure sensors protected with thermally grown silicon dioxide for the monitoring of chronic diseases and healing processes.

Citation:

Shin J, Yan Y, Bai W, Xue Y, Gamble P, Tian L, Kandela I, Haney CR, Spees W, Lee Y, Choi M, Ko J, Ryu H, Chang JK, Pezhouh M, Kang SK, Won SM, Yu KJ, Zhao J, Lee YK, MacEwan MR, Song SK, Huang Y, Ray WZ, Rogers JA. “Bioresorbable pressure sensors protected with thermally grown silicon dioxide for the monitoring of chronic diseases and healing processes.” Nat Biomed Eng 2019 Jan; 3(1):37-46.

Wireless, battery-free optoelectronic systems as subdermal implants for local tissue oximetry.

Citation:

Zhang H, Gutruf P, Meacham K, Montana MC, Zhao X, Chiarelli AM, Vázquez-Guardado A, Norris A, Lu L, Guo Q, Xu C, Wu Y, Zhao H, Ning X, Bai W, Kandela I, Haney CR, Chanda D, Gereau RW 4th, Rogers JA. “Wireless, battery-free optoelectronic systems as subdermal implants for local tissue oximetry.” Sci Adv 2019 Mar 8;5(3):eaaw0873.

Fully implantable optoelectronic systems for battery-free, multimodal operation in neuroscience research

Citation:

Gutruf P, Krishnamurthi V, Vázquez-Guardado A, Xie Z, Banks A, Su CJ, Xu Y, Haney CR, Waters EA, Kandela I, Krishnan S, Ray T, Leshock JP, Huang Y, Chanda D, Rogers JA. “Fully implantable optoelectronic systems for battery-free, multimodal operation in neuroscience research.” Nature Electronics 1:12, 652-660 (2018).

Whole-body imaging of cell death provides a systemic, minimally invasive, dynamic and near-real time indicator for chemotherapeutic drug toxicity.

Citation:

Johnson SE, Ugolkov A, Haney CR, Bondarenko G, Li L, Waters EA, Bergan R, Tran A, O’Halloran TV, Mazar AP, Zhao MW. Clin Cancer Res. 2019 Feb 15;25(4):1331-1342. doi: 10.1158/1078-0432.CCR-18-1846

Flexible Transient Optical Waveguides and Surface-Wave Biosensors Constructed from Monocrystalline Silicon

Bai W, Yang H, Ma Y, Chen H, Shin J, Liu Y, Yang Q, Kandela I, Liu Z, Kang SK, Wei C, Haney CR, Brikha A, Ge X, Feng X, Braun PV, Huang Y, Zhou W, Rogers JA. “Flexible Transient Optical Waveguides and Surface-Wave Biosensors Constructed from Monocrystalline Silicon.” Adv Mater. 2018 Aug;30(32): e1801584. doi:10.1002/adma.201801584

Bioresorbable pressure sensors protected with thermally grown silicon dioxide for the monitoring of chronic diseases and healing processes

Citation:

Shin J, Yan Y, Bai W, Xue Y, Gamble P, Tian L, Kandela I, Haney CR, Spees W, Lee Y, Choi M, Ko J, Ryu H, Chang JK, Pezhouh M, Kang SK, Won SM, Yu KJ, Zhao J, Lee YK, MacEwan MR, Song SK, Huang Y, Ray WZ, Rogers JA. “Bioresorbable pressure sensors protected with thermally grown silicon dioxide for the monitoring of chronic diseases and healing processes.” Nature Biomedical Engineering 3, 37–46 (2019).

Experimental Modeling Supports a Role for MyBP-HL as a Novel Myofilament Component in Arrhythmia and Dilated Cardiomyopathy.

Citation:

Barefield DY, Puckelwartz MJ, Kim EY, Wilsbacher LD, Vo AH, Waters EA, Earley JU, Hadhazy M, Dellefave-Castillo L, Pesce LL, McNally EM. “Experimental Modeling Supports a Role for MyBP-HL as a Novel Myofilament Component in Arrhythmia and Dilated Cardiomyopathy.” Circulation 136, 1477-1491 (2017).

Nanodiamond–Gadolinium(III) Aggregates for Tracking Cancer Growth In Vivo at High Field

Citation:

Rammohan NR, MacRenaris KW, Moore LK, Parigi G, Mastarone DJ, Manus LM, Lilley LM, Preslar AT, Waters EA, Filicko A, Luchinat C, Ho D, Meade TJ. “Nanodiamond–Gadolinium(III) Aggregates for Tracking Cancer Growth In Vivo at High Field” Nano Letters 16:12, 7551-7564 (2016).